Guided Self-Organization of Input-Driven Recurrent Neural Networks
نویسندگان
چکیده
We review attempts that have been made towards understanding the computational properties and mechanisms of input-driven dynamical systems like RNNs, and reservoir computing networks in particular. We provide details on methods that have been developed to give quantitative answers to the questions above. Following this, we show how self-organization may be used to improve reservoirs for better performance, in some cases guided by the measures presented before. We also present a possible way to quantify task performance using an information-theoretic approach, and finally discuss promising future directions aimed at a better understanding of how these systems perform their computations and how to best guide self-organized processes for their optimization.
منابع مشابه
Intrinsic Adaptation in Autonomous Recurrent Neural Networks
A massively recurrent neural network responds on one side to input stimuli and is autonomously active, on the other side, in the absence of sensory inputs. Stimuli and information processing depend crucially on the quality of the autonomous-state dynamics of the ongoing neural activity. This default neural activity may be dynamically structured in time and space, showing regular, synchronized, ...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملSelf-Organized Artificial Grammar Learning in Spiking Neural Networks
The Artificial Grammar Learning (AGL) paradigm provides a means to study the nature of syntactic processing and implicit sequence learning. With mere exposure and without performance feedback, human beings implicitly acquire knowledge about the structural regularities implemented by complex rule systems. We investigate to which extent a generic cortical microcircuit model can support formally e...
متن کاملSelf-Adaptive Recurrent Neural Networks for Robust Spatiotemporal Processing: from Animals to Robots
The ability to quantify temporal information on the scale of hundreds of milliseconds is critical towards the processing of complex sensory and motor patterns. However, the nature of neural mechanisms for temporal information processing (at this scale) in the brain still remains largely unknown. Furthermore, given that biological organisms are situated in a dynamic environment, the processing o...
متن کاملAdaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks
This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1309.1524 شماره
صفحات -
تاریخ انتشار 2013